上转换发光

JOURNALOFAPPLIEDPHYSICS98,113504͑2005͒

EnhancementofblueupconversionmechanisminYLiF4:Yb:Tm:Ndcrystals

LiliaCoronatoCourrol

FaculdadedeTecnologiadeSãoPaulo–LaboratóriodeEspectroscopiaÓpticaCEETEPS,SãoPaulo,Brazil

IzildaMarciaRanieri,LuísVicenteGomesTarelho,SôniaLíciaBaldochi,LaércioGomes,andNilsonDiasVieiraJúnior

InstitutodePesquisasEnergéticaseNucleares–CentrodeLaserseAplicações,CNEN,SãoPaulo,Brazil

͑Received30March2005;accepted20October2005;publishedonline5December2005͒InthispaperwepresentacomparisonbetweenYLiF4:Yb:TmandYLiF4:Yb:Tm:Ndsystemsidentifyingthemostimportantprocessesthatleadtoa20timesenhancementofthuliumblueupconversionemission,underexcitationaround792nm,forthedoublesensitizedsystem.Analysisofthe483nmand1030nmemissionsforthesampleswithdifferentconcentrationsofNd3+ionsshowedthatenergytransferbetweenNd3+andYb3+isthemainmechanismandresponsiblefortheenhancementinupconversion.2005AmericanInstituteofPhysics.͓DOI:10.1063/1.2137462͔

I.INTRODUCTION

Thedevelopmentofcompactbluelasersbasedonthu-lium͑Tm3+͒upconversionprocessesisnowadayswidelystudiedmainlyduetothepotentialofhighperformanceOEMapplications,suchasbiomedicalandanalyticalinstru-mentation,displaysystems,photoprinting.1,2

Inupconversionprocessestheinfraredexcitationiscon-vertedintoshorterwavelengthintotheultraviolet͑UV͒andvisibleranges.3Inthuliumdopedmedia,theefficiencyofthisprocessisverylow,butitwasnoticedthatthemecha-nismcouldbemadeoneortwoordersofmagnitudemoreefficientbyusingytterbium͑Yb3+͒4orneodymium͑Nd3+͒5assensitizerions.

Inthispaper,wecomparethethuliumsensitizationbyYbandYb/NdintheYLiF4͑YLF͒host.

InYLF,theneodymiumupperlaserlevelpresentsaverylongstoragetime,anaturalbirefringence,andarelativelyweakthermallensing.ThesecharacteristicsmaketheYLF:Ndcrystalaveryimportantlasermedium.6Recently,singledopedYLFfiberswereproducedshowingaveryin-terestingnewwaytothedevelopcompactlow-lossandlow-costlasersystems.7

WepresentherethespectroscopiccharacterizationofthenewYLF:Yb:Tm:Ndcrystal,underpumpingat792nm.Thispump,intheNdabsorptionband,resultsinablueup-conversionemissionthatcanbeusedtomakeaYLFfiberlaser.

FortheabsorptionmeasurementsaspectrometerCary17D-Oliswasused.Foremissionmeasurements,thesampleswereexcitedbyaSDLdiodelaserat792nm,andobservedbya0.5mSpexmonochromator,Stanfordchopper,PAR-EG&Glockin,Hammamatsus-20PMTandGermaniumde-tector.III.RESULTS

Figure1showstheabsorptionspectraofthesetwosamples.Figure2showsthepolarizedspectraofthesample.WhenYLFsamplescontainingTm3+co-dopedwithYb3+orYb3+andNd3+,areexcitedat792nm,astrongblueemissionisobserved.Itisimportanttomentionthatthesameexcita-tionofYLF:1%Tmdonotresultinanydetectableblueemissions.

Theblueemissionobservedinthesespectracanbeun-derstoodreferringtotheenergylevelsdiagramshowninFig.3.Whentheco-dopedYb/Tmsampleisexcitedat792

nm

II.MATERIALSANDMETHODS

InthisworkweusedYLFcrystalsgrownbytheCzho-chraskimethodindifferentcompositions:YLF:1%Tm;10%Yb;1%Tm;and20%Yb3+,0.5%Tm3+,x%Nd3+.Threesampleswerecutfromthislastcrystalfromthebeginning͑#2͒,half͑#5͒,andend͑#8͒thathavealittleNdconcentra-tionchangeduetosegregationcoefficient.Thesampleswerecutandpolishedwith2mmthickness.

0021-8979/2005/98͑11͒/113504/3/$22.50

FIG.1.PolarizedabsorptionspectraofYLF:Yb:Tm:Nd͑a͒andYLF:Yb:Tm͑b͒samples.

2005AmericanInstituteofPhysics

98,113504-1

113504-2Courroletal.J.Appl.Phys.98,113504͑2005͒

TABLEI.EnergytransferparametersfortheYLF:Yb:Tm:Ndcrystal.Theuncertaintyinthecrosssectionandlifetimevaluesare5%and10%inenergytransfermicroparametervalues.Parameters

Values

5.7ϫ10−20cm26.0ϫ10−19cm22.1ϫ10−21cm22.1ϫ10−21cm27.3ϫ10−21cm23.5ϫ10−21cm22ms15ms1ms2.1ms750␮s570␮s

͑CYbTm=13.7ϫ10−40cm6/s;Rc=12.0Å͒͑CTmYb=9.1ϫ10−40cm6/s;Rc=11.2Å͒͑CNdYb=5.5ϫ10−40cm6/s;Rc=9.8Å͒

FIG.2.PolarizedemissionspectraofYLF:Yb:Tm:Nd͑a͒andYLF:Yb:Tm͑b͒samplesexcitedat792

nm.

␴abs͑␲͒͑Nd͒͑792nm͒␴em͑␲͒͑Nd͒͑1047nm͒␴em͑Nd͒͑960nm͒␴abs͑Yb͒͑960nm͒␴absb͑␲͒͑Tm͒͑792nm͒␴em͑Tm͒͑475nm͒␶͑2F7/2͒␶͑3F4͒␶͑3H5͒␶͑3H4͒␶͑1G4͒␶͑4F3/2͒fcb

thefollowingprocessesaЈ,,andfoccurandpopulatetheTm3+1G4levelthatprocessesare:͑a’͒GroundstateabsorptionofTm͑␴aTm͒;͑c͒EnergytransferTm-Yb:

Tm͑F4͒+Yb͑F7/2͒→Tm͑H6͒+Yb͑F5/2͒;͑d͒

Cross-relaxationYbϫTm:

Yb͑2F5/2͒+Tm͑3F4͒→Yb͑2F7/2͒+Tm͑1G4͒;͑f͒

BacktransferYb-Tm:

Yb͑2F5/2͒+Tm͑3H6͒→Tm͑3H5͒+Yb͑2F7/2͒.

Thesameprocessesarecomplementedbytheprocesses,g,,andwiththeadditionofNdasco-dopantin͑a͒͑b͒

GroundstateabsorptionofNd͑␴aNd͒;CrossrelaxationNdϫYb,

Nd͑4F3/2͒+Yb͑2F7/2͒→Nd͑4I11/2͒+Yb͑2F5/2͒;͑e͒

CrossrelaxationNdϫTm:

Nd͑4F3/2͒+Tm͑3F4͒→Nd͑4I11/2͒+Tm͑1G4͒;͑g͒

BacktransferYb-Nd

Yb͑2F5/2͒+Nd͑4I9/2͒→Yb͑2F7/2͒+Nd͑4I15/2͒;͑h͒

EnergytransferNd-Tm:

3

2

3

2

Nd͑4F5/2͒+Tm͑3H6͒→Nd͑4I9/2͒+Tm͑3F4͒;͑i͒

EnergytransferTm-Nd:

Tm͑3F4͒+Nd͑4I9/2͒→Tm͑3H6͒+Nd͑4F5/2͒.

TableIshowstheenergytransfersparametersobtainedbyoverlap-integralbetweensensitizeremissioncrosssec-tionsandreceptorabsorptioncrosssectionbands.8Theen-ergytransferprocessesf,c,andgaremoreimportantthatthebacktransferethislastoneinvolvesabsorptionofphononsleastprobablethatcreationofphonons.

TheenergytransferratebetweenTm-Ybinthesamplecontaining10%Yb:1%Tmis660s−1andinthesamplecontaining20%Yb:1%Tmis1020s−1.4Theenergytransferefficienciesare47%and57%inthesamplescontaining10%Yband20%Yb,respectively.ItwasobservedthatbacktransferTm-Ybisalsoanimportantmechanism,andthatTm-YbenergytransfergrowswithYbconcentration.

WeobservethatasmallNdconcentrationvariationintheYLF:Yb:Tm:NdsamplesresultsinanenhancementoftheTmblueemissionasitcanbeseeninFig.4.TheNdconcentrationvariationreflectstooinanenhancementintheYbemissionbandintheinfraredascanbeseeninFig.5.Thisindicatesthattheprocesshashighefficiency.

TheblueemissioncomesfromtheTm3+1G4levelsandincreaseswiththepumpingintensitywithaslopeof1.6

in

FIG.3.EnergylevelsschemeandtheenergytransfermechanismoftheYb/Tm/Ndsystem.

113504-3Courroletal.J.Appl.Phys.98,113504͑2005͒

FIG.4.VariationofTmblueemissionintensityinthethreesamplesYLF:Yb:Tm:NdcontainingdifferentNdconcentrations.TheinsidefigureshowstheabsorptioncoefficientofthethreedifferentsamplesoftheYLF:Yb:Tm:Nd

crystal.

FIG.6.Dependenceoftheblueemissionsignalwiththepumpingintensity.

boththeYb:TmandYb:Tm:Ndsamples͑Fig.6andRef.4͒,confirmingthattheupconversionprocessfromthe3F4statetothe1G4stateisatwophotonprocess.IV.CONCLUSIONS

ComparingthetwodifferentYLFcompositionsYb/TmandYb/Tm/Ndwecanconcludethat:

͑1͒Bothcompositionareefficientandgenerateblueemis-sionbyatwophotonprocessmechanismarisingfromthe792nmexcitation;

͑2͒TheYLF:Yb:Tm:Ndsamplehasahigherabsorption

coefficientat792nmthantheYLF:Yb:Tmsample,andconsequentlyahigherabsorptioncrosssection;

͑3͒SinceTmionsaredirectlypumpedby792nmwave-length,thegroundstatecanbedepleted,andtherefore,

thetransition1G4→3H6,atϳ483nmcanbeusedforgeneratingstimulatedemissionusinggroundstatedeple-tionorpump-resonantexcitationmethods;

͑4͒Thecross-relaxationNdϫTmleadstoagrowthinthe

1

G4population;

͑5͒Averyimportantenergytransfermechanismbetween

NdandYbionswasnoticeconsideringthatnoNdemis-sionisobservedininfraredregion,thisfactalsoim-peachestheTm3F4populationdecreasesduetoTm-Ndinteraction.TheenhancementinblueemissionisproportionaltotheenhancementinNdabsorption.

Inconclusion,anenhancementinϳ483nmTm3+emis-sionofalmost20timeswasobservedinthesamplesYLF:Yb:Tm:NdcomparedtotheYLF:Yb:Tmsample.ThissystemcouldbeinterestingfordevelopmentofcompactlasersystemsusingdopedYLFfiberswithabout5mminlengthand300␮mindiameter,underadiodelaserpump.

1

FIG.5.͑a͒VariationoftheinfraredYbemissionbandoftheYLF:Yb:TmandYLF:Yb:Tm:Nd,͑b͒inthethreedifferentYLF:Yb:Tm:Ndsamples,and͑c͒variationwith

polarization.

W.P.Risk,T.R.Gosnell,andA.V.Nurmikko,CompactBlue-GreenLasers,CambridgeStudiesinModernOptics͑CambridgeUniversityPress,Cambridge,2003͒.2

LeeLaser,DPSS473-nmMicrochipBlueLaser,PhotonicsMiniMaga-zine͑2003͒.3

A.Wnuk,M.Kaczkan,Z.Frukacz,I.Pracka,G.Chadeyron,M.-F.Jou-bert,andM.Malinowski,J.AlloysCompd.341,353͑2002͒.4

X.X.Zhang,P.Hong,M.Bass,andB.H.T.Chai,Phys.Rev.B51,9298,͑1995͒.5

N.Rakov,G.S.Maciel,M.L.Sundheimer,L.deS.Menezes,A.S.L.Gomes,Y.Messaddeq,F.C.Cassanjes,G.Poirier,andS.J.L.Ribeiro,J.Appl.Phys.92,6337͑2002͒.6

E.P.Maldonado,I.M.Ranieri,S.P.Morato,andN.D.Vieira,Jr..inTrends,OpticsandPhotonicsSeries,TOPS,AdvancedSolidStateLaser,editedbyC.R.PollockandW.R.Bosenberg͑OpticalSocietyofAmerica,Washington,D.C.,1997͒,Vol.10,pp.444–447.7

A.M.E.Santo,I.M.Ranieri,G.E.S.Brito,B.M.Epelbaum,S.P.Morato,N.D.Vieira,Jr.,andS.L.Baldochi,J.Cryst.Growth275,528͑2005͒.8

T.Förster,Ann.Phys.2,55͑1948͒;D.L.Dexter,J.Chem.Phys.21,836͑1953͒

.


相关文章

  • 高压LED芯片的优缺点比较
  • 一. 什么是高压LED 再仔细了解一下,原来它只是很多20mA的小功率LED串联起来,变成了所谓的高压LED.把很多小功率LED串联起来并不是什么新鲜事,其实在很多灯具里早就这样用了.唯一不同的是过去灯具厂商都是把已经封装好了的小功率LED ...

  • 集成电路知识
  • 维库小知识:集成电路的命名 1 国产集成电路 的命名方法 我国集成电路的型号命名采用与国际接轨的准则,一般由五部分组成,其各部分组成如图1所示,各部分含义如表1所示. 图1 国产集成电路命名的组成 表1 国产集成电路型号命名各组成部分含义 ...

  • 实验五时序逻辑电路实验报告_计数器
  • 实验五 时序逻辑电路实验 一.实验目的 1.掌握同步计数器设计方法与测试方法. 2.掌握常用中规模集成计数器的逻辑功能和使用方法. 二.实验设备 1.直流稳压电源.信号源.示波器.万用表.面包板 2.74LS190.74LS393.74LS ...

  • 光纤温度传感器的设计
  • 光纤温度传感器的设计 摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算.传感器以光 ...

  • 大学课程设计音乐彩灯控制器
  • 电力电子技术产业作为当代高新技术尤其是信息技术产业与传统产业的接口,在 国民经济中扮演着越来越重要的角色.此设计论述了彩灯的总体控制,彩灯将会 随着音乐的节奏闪亮,大大的改善了人们的娱乐环境,人们将在音乐和灯光当中 消除工作一天的疲惫,并且 ...

  • 第1章 光电传感与检测技术绪论
  • 光电传感与检测技术 教材:<光电检测技术与应用(第三版)>郭培源 付扬 编著 北京航空航天大学出版社 参考书目:<光电检测技术>曾光宇 清华大学出版社 <光电传感与检测技术>江晓军 机械工业出版社 < ...

  • 太阳能的研发
  • 太阳能照明探讨 肖 艳 (广东省江门电材公司,江门529100) 摘 要:随着经济的发展,社会的进步,人们对能源提出了越来越高的要求,寻找新能源成为当前人类面临的迫切课题.该文根据太阳能照明广阔的市场前景,阐述了太阳能照明系统的结构.功能及 ...

  • PON系统测试用光功率计
  • PON 系统测试用光功率计 1,PON 系统介绍 目前FTTx (光纤到户:FTTH :光纤到住地:FTTP )网络建设正成为国内外接入网建设的热点.PON 接入网技术是业内公认的FTTx 的最佳解决方案,这种技术可以使多个用户共享单根光纤 ...

  • 电流表电压表
  • 电流表重要元件--分流器的制作 2012年04月01日 09:56 来源:本站整理 作者:灰色天空 分流器是根据直流电流通过电阻时在电阻两端产生电压的原理制成. 分流器广泛用于扩大仪表测量电流范围,有固定式定值分流器和精密合金电阻器,均可用 ...

  • 单片机温度传感器
  • 单片机课程设计报告 (南京信息工程大学) 年级专业:------------------ 姓名:----------------------- 学号:----------------------- 日期:------------------ ...

© 2024 范文参考网 | 联系我们 webmaster# 12000.net.cn