直线和圆的方程

第七章 直线和圆的方程

●网络体系总览

●考点目标定位

(1)理解直线的斜率的概念,掌握过两点的直线的斜率公式. 掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.

(2)掌握两条直线平行与垂直的条件、两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的关系.

(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法.

(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 在复习本章时要注意如下几点:

1. 要能分辨线段的有向与无向概念上的混淆,有向线段的数量与有向线段长度的混淆,能否分清这两点是学好有向线段的关键.

2. 在解答有关直线的问题时,要注意(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次是倾斜角的范围;(2)在利用直线的截距式解题时,要注意防止由于“零截距”而造成丢解的情况;(3)在利用直线的点斜式、斜截式解题时,要注意检验斜率不存在的情况,防止丢解;(4)要灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算;(5)掌握对称问题的四种基本类型的解法;(6)在由两直线的位置关系确定有关参数的值或其范围时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学思想方法.

7.1 直线的方程

●知识梳理

1. 直线的倾斜角、斜率及直线的方向向量 (1)直线的倾斜角

在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.

当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°. 可见,直线倾斜角的取值范围是0°≤α<180°. (2)直线的斜率

倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k =tanα(α≠90°).

倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞).

(3)直线的方向向量

设F 1(x 1,y 1)、F 2(x 2,y 2)是直线上不同的两点,则向量F 1F 2=(x 2-x 1,y 2-y 1)称为直线的方向向量. 向量

y -y 11

F 1F 2=(1,2)=(1,k )也是该直线的方向向量,k

x 2-x 1x 2-x 1

是直线的斜率.

(4)求直线斜率的方法

①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tanα.

②公式法:已知直线过两点P 1(x 1,y 1)、P 2(x 2,y 2),且x 1≠x 2,则斜率k =

y 2-y 1

.

x 2-x 1

n . m

平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率. 斜率的图象如下图.

③方向向量法:若a =(m ,n )为直线的方向向量,则直线的斜率k =

对于直线上任意两点P 1(x 1,y 1)、P 2(x 2,y 2),当x 1=x 2时,直线斜率k 不存在,倾斜角α=90°;当x 1≠x 2时,直线斜率存在,是一实数,并且k ≥0时,α=arctank ,k <0时,α=π+arctank .

2. 直线方程的五种形式 (1)斜截式:y =kx +b .

(2)点斜式:y -y 0=k (x -x 0).

(3)两点式:

x -x 1y -y 1=.

y 2-y 1x 2-x 1

x y +=1. a b

(5)一般式:Ax +By +C =0. ●点击双基

(4)截距式:

π

+y =0的倾斜角是 7ππ5π6πA. - B. C. D .

7777

ππ6π6π

解析:k =-tan =tan(π-)=tan且∈[0,π).

7777

答案:D

2. 过两点(-1,1)和(3,9)的直线在x 轴上的截距是

322

A. - B. - C. D .2

235解析:求出过(-1,1)、(3,9)两点的直线方程,令y =0即得. 答案:A

1. 直线x tan

3. 直线x cos α+y +2=0的倾斜角范围是

πππ5π,)∪(,] 6226π5π

B. [0,]∪[,π)

665π

C. [0,]

6π5πD . [,]

66

解析:设直线的倾斜角为θ,

A. [则tan θ=-

1cos α. 又-1≤cos α≤1,

π5π≤tan θ≤. ∴θ∈[0,]∪[,π). 3366答案:B

∴-

4. 直线y =1与直线y =3x +3的夹角为___________.

解法一:l 1:y =1与l 2:y =x +3的斜率分别为k 1=0,k 2=. 由两直线的夹角公式得 tan α=|

k 2-k 1

|=,所以两直线的夹角为60°.

1+k 1k 2

解法二:l 1与l 2表示的图象为(如下图所示)y =1与x 轴平行,y =x +3与x 轴倾斜角为60°,所以y =1与y =3x +3的夹角为60°.

答案:60°

5. 下列四个命题:①经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;②经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(x 2-x 1)(x -x 1)=

x y

+=1表示;④经过定点 a b

A (0,b )的直线都可以用方程y =kx +b 表示. 其中真命题的个数是

A.0 B.1 C.2 D .3

解析:对命题①④,方程不能表示倾斜角是90°的直线,对命题③,当直线平行于一条坐标轴时,则直线在该坐标轴上截距不存在,故不能用截距式表示直线. 只有②正确. 答案:B

●典例剖析

【例1】 已知△ABC 的三个顶点是A (3,-4)、B (0,3)、C (-6,0),求它的三条边所在的直线方程.

剖析:一条直线的方程可写成点斜式、斜截式、两点式、截距式和一般式等多种形式. 使用时,应根据题目所给的条件恰当选择某种形式,使得解法简便. 由顶点B 与C 的坐标可知点B 在y 轴上,点C 在x 轴上,于是BC 边所在的直线方程用截距式表示,AB 所在的直线方程用斜截式的形式表示,AC 所在的直线方程利用两点式或点斜式表示均可,最后为统一形式,均化为直线方程的一般式.

解:如下图,因△ABC 的顶点B 与C 的坐标分别为(0,3)和(-6,0),故B 点在y 轴上,C 点在x 轴上,即直线BC 在x 轴上的截距为-6,在y 轴上的截距为3,利用截距式,

y x

直线BC 的方程为+=1,

-63

(y 2-y 1)(y -y 1)表示;③不经过原点的直线都可以用方程

)

化为一般式为x -2y +6=0.

由于B 点的坐标为(0,3),故直线AB 在y 轴上的截距为3,利用斜截式,得直线AB 的方程为y =kx +3.

又由顶点A (3,-4)在其上,所以-4=3k +3.故k =-于是直线AB 的方程为y =-

7. 3

7

x +3,化为一般式为7x +3y -9=0. 3

由A (3,-4)、C (-6,0),

得直线AC 的斜率k AC =

4-4-0

=-.

3-(-6) 9

利用点斜式得直线AC 的方程为

4

(x +6), 9

化为一般式为4x +9y +24=0.

也可用两点式,得直线AC 的方程为

y -0=-

y -0x -(-6)

=,

-4-03-(-6)

再化简即可.

评述:本题考查了求直线方程的基本方法. 【例2】 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)(a 1≠a 2)的直线方程.

剖析:利用点斜式或直线与方程的概念进行解答. 解:∵P (2,3)在已知直线上, a 1+3b 1+1=0, ∴ 2a 2+3b 2+1=0.

∴2(a 1-a 2)+3(b 1-b 2)=0,即

b 1-b 22

=-.

a 1-a 23

2

(x -a 1). 3

∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.

评述:此解法运用了整体代入的思想,方法巧妙. 思考讨论

∴所求直线方程为y -b 1=-

依“两点确定一直线”,那么你又有新的解法吗? 提示: 由 2a 1+3b 1+1=0, 2a 2+3b 2+1=0,

知Q 1、Q 2在直线2x +3y +1=0上.

【例3】 一条直线经过点P (3,2),并且分别满足下列条件,求直线方程: (1)倾斜角是直线x -4y +3=0的倾斜角的2倍;

(2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点). 剖析:(2)将面积看作截距a 、b 的函数,求函数的最小值即可. 解:(1)设所求直线倾斜角为θ,已知直线的倾斜角为α,则θ=2α,且tan α=tan θ=tan2α=

1

,4

8, 15

从而方程为8x -15y +6=0.

(2)设直线方程为

y 6x 32+=1,a >0,b >0,代入P (3,2),得+=1≥2,

ab b a b a

得ab ≥24,

从而S △AOB =

1

ab ≥12, 2

32b 2=,∴k =-=-. b 3a a

∴方程为2x +3y -12=0.

评述:此题(2)也可以转化成关于a 或b 的一元函数后再求其最小值. 深化拓展

此时

若求|P A |²|PB |及|OA |+|OB |的最小值,又该怎么解呢? 提示: 可类似第(2)问求解.

●闯关训练 夯实基础

1. 直线x -2y +2k =0与两坐标轴所围成的三角形面积不大于1,那么k 的范围是 A. k ≥-1 B. k ≤1

C. -1≤k ≤1且k ≠0 D . k ≤-1或k ≥1

解析:令x =0,得y =k ;令y =0,得x =-2k . ∴三角形面积S =

1

|xy |=k 2. 2

又S ≤1,即k 2≤1, ∴-1≤k ≤1.

又∵k =0时不合题意,故选C. 答案:C

2. (2004年湖南,2)设直线ax +by +c =0的倾斜角为α,且sin α+cosα=0,则a 、b 满足

A. a +b =1 B. a -b =1 C. a +b =0 D . a -b =0 解析:0°≤α<180°,又sin α+cosα=0,α=135°,∴a -b =0. 答案:D

3. (2004年春季北京)直线x -3y +a =0(a 为实常数)的倾斜角的大小是____________.

33

,即tan α=. 33

∴α=30°. 答案:30°

4. (2005年北京东城区目标检测)已知直线l 1:x -2y +3=0,那么直线l 1的方向向量a 1

为____________(注:只需写出一个正确答案即可);l 2过点(1,1),并且l 2的方向向量a 2与a 1满足a 1²a 2=0,则l 2的方程为____________.

1

解析:由方向向量定义即得a 1为(2,1)或(1,).

2

a 1²a 2=0,即a 1⊥a 2.

也就是l 1⊥l 2,即k 1²k 2=-1.

再由点斜式可得l 2的方程为2x +y -3=0.

1

答案:(2,1)或(1,) 2x +y -3=0

2

解析:k =

5. 已知直线l 的斜率为6,且被两坐标轴所截得的线段长为,求直线l 的方程. 解法一:设所求直线l 的方程为y =kx +b .

∵k =6,∴方程为y =6x +b .

令x =0,∴y =b ,与y 轴的交点为(0,b );

b b

,与x 轴的交点为(-,0). 66

b

根据勾股定理得(-)2+b 2=37,

6

∴b =±6. 因此直线l 的方程为y =6x ±6.

x y

解法二:设所求直线为+=1,则与x 轴、y 轴的交点分别为(a ,0)、(0,b ).

a b

由勾股定理知a 2+b 2=37.

b

又k =-=6,

a 22

+b =37, 解此方程组可得 b

-=6. a

a =1, a =-1,

或b =-6 b =6.

y y

因此所求直线l 的方程为x +=1或-x +=1,即6x -y ±6=0.

-66

6. 在△ABC 中,已知点A (5,-2)、B (7,3),且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上.

(1)求点C 的坐标; (2)求直线MN 的方程.

3+y 5+x

解:(1)设点C (x ,y ),由题意得=0,=0,得x =-5,y =-3. 故所求点C

22

的坐标是(-5,-3).

y -05x -1

(2)点M 的坐标是(0,-),点N 的坐标是(1,0),直线MN 的方程是=,

520-1--02

即5x -2y -5=0. 培养能力

7. 某房地产公司要在荒地ABCDE (如下图)上划出一块长方形地面(不改变方位)建造一幢八层的公寓楼,问如何设计才能使公寓占地面积最大?并求出最大面积. (精确到1 m 2)

令y =0,∴x =-

解:如下图,在线段AB 上任取一点P ,

分别向CD 、D E 作垂线划得一块长方形土地,建立如下图所示的直角坐标系,则AB 的

y x 22+=1.设P (x ,20-x ),则长方形面积S =(100-x )[80-(20-x )]

333020

(0≤x ≤30).

方程为

2220x +x +6000(0≤x ≤30). 33

50

配方,易得x =5,y =时,S 最大,其最大值为6017 m2.

3

化简得S =-

8. (文)已知点P (1,-1),直线l 的方程为2x -2y +1=0.求经过点P ,且倾斜角为直线l 的倾斜角一半的直线方程.

α2解:设直线l 的倾斜角为α,则所求直线的倾斜角为2,由已知直线l 的斜率为tan α=

2

α

2tan

及公式tan α=

1-tan

2

,得

2

αα

tan 2+22²tan 2-1=0.

αα

解得tan 2=-2或tan 2=-3-2.

απα22π

由于tan α=,而00.

2248α

于是所求直线的斜率为k =tan2=-2.

故所求的直线方程为y -(-1)=(3-2)(x -1), 即(3-2)x -y -(-2+1)=0. (理)设直线l 的方程是2x +By -1=0,倾斜角为α. (1)试将α表示为B 的函数;

π2π<α<,试求B 的取值范围;

36

(3)若B ∈(-∞,-2)∪(1,+∞),求α的取值范围.

π

解:(1)若B =0,则直线l 的方程是2x -1=0,∴α=;

2

21

若B ≠0,则方程即为y =-x +,

B B

2-2

∴当B <0时,->0,α=arctan(),

B B 22

而当B >0时,-<0,α=π+arctan(-),

B B

(2)若

-arctan

即α=f (B )2

(B <0), B

π

(B =0), 2

2

π-arctan (B >0).

B π

,则B =0, 2

(2)若α=若α≠

π

,则tan α<-3或tan α>,

32

22

即-<-(B >0)或-=>(B <0),

3B B

2

3. ∴-23<B <0或0<B <32

. 综上,知-23<B <32

(3)若B <-2,则-<1,

B π

∴0<tan α<1,0<α<;

4

2

若B >1,则->-2,

B

∴0>tan α>-2,π-arctan2<α<π.

π

综上,知π-arctan2<α<π或0<α<.

4

探究创新

9. 某市现有自市中心O 通往正西和东北方向的两条主要公路,为了解决交通拥挤问题,市政府决定修一条环城路,分别在通往正西和东北方向的公路上选取A 、B 两点,使环城公路在A 、B 间为线段,要求AB 环城路段与中心O 的距离为10 km,且使A 、B 间的距离|AB |最小,请你确定A 、B 两点的最佳位置(不要求作近似计算).

解:以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立如下图所示的坐标系.

设A (-a ,0)、B (b ,b )(其中a >0,b >0),

y -0x +a

=, b -0b +a

即bx -(a +b )y +ab =0.

则AB 的方程为∵10=

|ab |b +(a +b )

2

2

∴a 2b 2=100(a 2+2b 2+2ab ) ≥100(2a 2⋅2b 2+2ab ) =200(1+2)ab . ∵ab >0,

∴ab ≥200(2+1).

当且仅当“a 2=2b 2”时等号成立, 而|AB |=(b +a ) 2+b 2=∴|AB |≥20(2+1).

2=2b 2, 当ab =102b 2+a 2+2ab ,

ab , 10

a =102(2+2) ,

时,|AB |取最小值, 即b =102+2 此时|OA |=a =102(2+2) , |OB |=102(2+2) ,

∴A 、B 两点的最佳位置是离市中心O 均为102(2+2) km 处.

●思悟小结 直线的倾斜角、斜率及直线在坐标轴上的截距是刻画直线位置状态的基本量,应正确理解;直线方程有五种形式,其中点斜式要熟练掌握,这五种形式的方程表示的直线各有适用范围,解题时应注意不要丢解;含参数的直线方程问题用数形结合法常常简捷些.

●教师下载中心 教学点睛

1. 注意斜率和倾斜角的区别,让学生了解斜率的图象.

2. 直线方程的点斜式、两点式、斜截式、截距式等都是直线方程的特殊形式,其中点斜式是最基本的,其他形式的方程皆可由它推导. 直线方程的特殊形式都具有明显的几何意义,但又都有一些特定的限制条件,因此应用时要注意它们各自适用的范围,以避免漏解.

3. 如何建立平面坐标系内满足一定条件的直线的方程是本节的主要问题;通用的解决方法是待定系数法;根据所知条件选择恰当的直线方程的形式是解题的关键;克服各类方程局限性的手段是分类讨论;开阔思路分析问题的措施是数形结合.

拓展题例

【例1】 在直线方程y =kx +b 中,当x ∈[-3,4]时,y ∈[-8,13],求此直线方程. 解:当x 的区间的左端点与y 的区间的左端点对应,x 的区间的右端点与y 的区间的右端点对应时,得

-3k +b =-8,

4k +b =13,

k =3, 得b =1,

∴直线方程为y =3x +1.

当x 的区间的左端点与y 的区间的右端点对应,x 的区间右端点与y 的区间的左端点对应时,得

-3k +b =13,

4k +b =-8,

k =-3, 解得b =4.

∴所求的直线方程为y =-3x +4.

【例2】 已知两点A (-1,2)、B (m ,3).

(1)求直线AB 的斜率k 与倾斜角α;

(2)求直线AB 的方程;

3-1,-1],求直线AB 的倾斜角α的取值范围. 3

π解:(1)当m =-1时,直线AB 的斜率不存在,倾斜角α=. 2

1当m ≠-1时,k =, m +1

1当m >-1时,α=arctan , m +1

1当m <-1时,α=π+arctan . m +1

(2)当m =-1时,AB :x =-1,

1当m ≠1时,AB :y -2=(x +1). m +1

π(3)1°当m =-1时,α=; 2

2°当m ≠-1时, (3)已知实数m ∈[-

31∈(-∞,-]∪[,+∞), 3m +1

πππ2π∴α∈[,)∪(,]. 3622

π2π故综合1°、2°得,直线AB 的倾斜角α∈[,]. 36

∵k =


相关文章

  • 直线的点斜式方程
  • ¤知识要点: 1. 点斜式:直线l过点P0(x0,y0),且斜率为k,其方程为yy0k(xx0). 2. 斜截式:直线l的斜率为k,在y轴上截距为b,其方程为ykxb. 3. 点斜式和斜截式不能表示垂直x轴直线. 若直线l过点P0 ...

  • 高二数学直线和圆的方程教材分析
  • 第七章 直线和圆的方程教材分析 本章的最主要的内容是直线方程.圆的方程以及线性规划的初步知识(直线的倾斜角和斜率. 直线方程的点斜式.两点式. 直线方程的一般式. 两条直线平行与垂直的条件. 两条直线的夹角. 点到直线的距离. 用二元一次不 ...

  • 1.2.1直线方程的点斜式.(正式)
  • 1.2.1直线方程的点斜式 (一)学习目标 1.知识与技能 (1)理解直线方程的点斜式.斜截式的形式特点和适用范围: (2)能正确利用直线的点斜式.斜截式公式求直线方程: (3)体会直线的斜截式方程与一次函数的关系. 2.过程与方法 在已知 ...

  • 323直线的一般式方程教案
  • 3.2.3直线的一般式方程教案 教材分析:(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强:一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬. (2)直线方程的一般式 ...

  • 高三数学教教案-解析几何
  • 第八章 平面解析几何 第一节 直线的倾斜角.斜率与方程 教学目标要求: 1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 3.掌握确定直线位置的几何要素,掌 ...

  • 选做专题(一)--常见的参数方程
  • 选做专题(一)常见的参数方程 [要点梳理] (1)直线的参数方程 ⎧⎪x =x 0+t cos α, 若直线过(x 0,y 0) ,α为直线的倾斜角,则直线的参数方程为⎨(t 为参数) ,其中参数t 的几何 ⎪y =y 0+t sin α⎩ ...

  • 3.2.2[直线的两点式方程]教案(人教A版必修2)
  • 金太阳新课标资源网 3.2.2<直线的两点式方程>教案 [教学目标] 1.直线的两点式方程的推导过程: 2.直线的截距式方程的构成,了解直线方程截距式的形式特点及适用范围: 3 截距的含义.掌握直线方程的两点的形式特点及适用范围 ...

  • 直线方程综合题
  • 高考要求 理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法:掌握直线方程的点斜式.两点式和直线方程的一般式,并能根据条件熟练地求出直线方程知识点归纳 1数轴上两点间距离公式:=x B -x A 2 ...

  • 高二数学教案:3.2.2直线的两点式方程直线的方程
  • 课题:§3.2.2直线的两点式方程 一.教学任务分析: (1)掌握直线方程的两点的形式特点及适用范围,了解直线方程截距式的形式特点及适用范围. (2)能正确利用直线的两点式方程求直线方程. 二.教学重点与难点: 教学重点:直线方程的两点式. ...

  • 必修二直线与方程知识点总结
  • 直线与方程总结 [知识点一:倾斜角与斜率] (1)直线的倾斜角 ①关于倾斜角的概念要抓住三点:1.与x轴相交:2.x轴正向:3.直线向上方向. ②直线与x轴平行或重合时,规定它的倾斜角为0 00 ③倾斜角的范围0180 (2)直线的 ...

© 2024 范文参考网 | 联系我们 webmaster# 12000.net.cn